畢達哥拉斯
西元前六世紀,大約是孔子生活的時代,畢達哥拉斯生於愛琴海上的摩斯島(Samos),他一生充滿傳奇和神秘,令歷史學家很難分清事實和虛偽。似乎可以肯定的一件事是畢達歌拉斯發展了數學的邏輯思想,對於數學發展史上的第一個黃金時期影響甚鉅。畢達哥拉斯歷經過20年的海外旅遊,到過印度、埃及、巴比倫,他瞭解這些世界的數學雖然是一套複雜的系統,但都僅僅是用來解決實際生活問題的工具。當他回到摩斯島後,他建立一所學校叫畢達哥拉斯半圓,致力於哲學研究。
畢達哥拉斯曾花錢請一位小男孩成為他的第一位學生,每聽一節課就給予三銀錢,幾星期後,畢達哥拉斯注意到學生由勉強學習轉變成對知識的熱情。他佯裝不再有能力支付學生,因而停止上課,這時,學生反而寧可付錢聽課。
畢氏建立畢達哥拉斯兄弟會,崇拜整數、分數為偶像,他們認為透過對數的瞭解,可以揭示宇宙神秘,使他們更接近神,事實是一個宗教性社團組織。入會時需宣誓不得將數學發現公諸於世,甚至在畢氏死後,有成員因公開正12面體可由12個正五邊形構成的發現而被迫浸水致死。他們集中注意於研究自然數和有理數,特別是完美數,它是本身正因數(除了本身之外)之和,例如:6=1+2+3、28=1+2+4+7+14。他們認為上帝因為6是完美的,因此選擇以6天創造萬物,且月亮繞行地球一週約28天。
「在一個直角三角形,斜邊的平方是兩股平方和。」這個定理中國人(周朝的商高)和巴比倫人早在畢氏提出前一千年就在使用,但一般人仍將定理歸屬於畢達歌拉斯,是因為他證明了定理的普遍性。
畢達哥拉斯而言,數學之美在於有理數能解釋一切自然現象。這種起指導作用的哲學觀使畢氏對無理數的存在視而不見,甚至導致他一個學生被處死。這位學生名叫希帕索斯,出於無聊,他試圖找出根號2的等價分數,最終他認識到根本不存在這個分數,也就是說根號2是無理數,希帕索斯對這發現,喜出望外,但是他的老師畢氏卻不悅。因為畢氏已經用有理數解釋了天地萬物,無理數的存在會引起對他信念的懷疑。希帕索斯經洞察力獲致的成果一定經過了一段時間的討論和深思熟慮,畢氏本應接受這新數源。然而,畢氏始終不願承認自己的錯誤,卻又無法經由邏輯推理推翻希帕索斯的論證。使他終身蒙羞的是,他竟然判決將希帕索斯淹死。這是希臘數學的最大悲劇,只有在他死後無理數才得以安全的被討論著。後來,歐幾里德以反證法證明根號2是無理數。
沒有留言:
張貼留言